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A study is made of the extent to which local boundary geometry can influence separa- 
tion in a two-dimensional or an axisymmetric Stokes flow. It is shown that a Stokes 
flow can separate from a point on a smooth body at an arbitrary angle, which can be 
determined only by reference to the global solution for the flow past the body, and the 
dominant mode in the stream function near a point of separation is O(r3) in the distance 
r from the separation point. When the body has a protruding cusped edge it is shown 
that separation can occur at  an arbitrary inclination to the edge which must again be 
determined from the global solution. In this case the stream function is O(r8) near the 
edge. When the flow is locally within a wedge-shaped region of anglefi, where /3 + n or 
2n, and /3 > 146.3", i t  is shown that the dominant modes near the vertex of the wedge 
are non-separating modes. It follows that, in general, a Stokes flow around such a 
wedge cannot separate from the vertex. This conclusion is illustrated by reference to 
the global solution for uniform axisymmetric flow past a spherical lens, in which the 
structure of the flow near the rim is examined in detail. In  the case of a body having a 
sharp edge of small but non-zero angle protruding into the flow, so that /3 is very close 
to 271, it is shown that separation occurs exceedingly near to the edge. This happens, for 
example, in the flow past a thin concave-convex lens, for which separation occurs near 
the rim on the concave side. The analysis also suggests that a similar separation occurs 
very near the rim on the flatter side of a thin asymmetric biconvex lens. However, for 
the symmetric biconvex lens, and, as a special case, the circular disk, no separation 
occurs on either side near the rim. For p < 146.3", streaming flow into the vertex of a 
wedge does not occur because of the presence of an infinite set of vortices, and the 
possibility of separation at the vertex in the sense discussed here does not arise. 

1. Introduction 
The biharmonic equation governing the well-known Stokes flow of viscous fluids at  

very low Reynolds number is an elliptic partial differential equation which requires 
suitable boundary data to be provided at all points of a closed domain to define a 
solution to the equation in the interior. Furthermore the sohtion at any interior point 
of the domain depends on the data provided at all points around the boundary. In some 
cases, however, where the shape of the boundary has special features, one may expect 
the solution of the equation to be particularly influenced by the local boundary 
conditions imposed by these special features. An interesting example is one in which 
the boundary has a corner in the two-dimensional sense, at  which it suffers a sudden 
change of slope. It has been shown by Dean & Montagnon (1949) and Moffatt (1964) 
t,hat tthe solutions of the equation take on a particular form near such a corner. For 
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solutions in a plane they represent, locally, the solution for flow in a wedge, and the 
stream function $ may be written, in plane polar co-ordinates (T ,  O), in the form 

$(r, 8) = rn+l{A cos (n + 1) S + B sin (n + 1) 8 + C cos (n - 1) 8 + D sin (n - 1) S}, (1) 

where A ,  B, C and D are constants which are used to satisfy no-slip conditions at  each 
plane, and n is a parameter other than 0, + 1 or - 1. For these values of n the solution 
must be written in the slightly different forms 

$(r ,O)  = Acos28+Bsin28+C8+D 

$(r, 8) = r{A cos 8 + B sin 8 + C8 cos 8 +DO sin 8} 

$(r,8) = ~ ~ { A c o s ~ S + B S ~ ~ ~ ~ + C ~ + D }  (n = + l ) .  

(n = --I), 

(n = 0 ) ,  

In  the case of axisymmetric flows with a boundary having a discontinuity in slope 
in the meridian plane, the differential equation for $ takes on a different mathematical 
form, but it is clear that the solution near such a corner, where the vertex forms a 
circular rim about the axis of symmetry, will become essentially two-dimensional in 
the neighbourhood of the rim, and the effect of the rim curvature is locally a small 
perturbation on the plane-wedge solution. The same form of solution arises in several 
other similar situations. The separation of a viscous fluid at the edge of a solid plane 
boundary into a siress-free surface may be regarded as locally wedge-like, and solutions 
of the form (1) were used by Michael (1958) to show that the angle of separation cannot 
take arbitrary values. Michael (1964) also examined the conditions under which the 
interface between two viscous fluids may become locally sharp. More recently a 
number of global solutions of the biharmonic equation have revealed that the pheno- 
menon of separation in Stokes flow past obstacles of various shapes is very widespread. 
The axisymmetric solution given by Dorrepaal et al. (1976) for a closed torus placed in 
a uniform stream revea.ls separated-flow patterns with systems of closed vortices 
near the centre of the torus similar to those examined by Moffatt for the case in which 
n becomes imaginary. Similar behaviour in the axisymmetric flow past two spheres has 
recently been shown by Davis et al. (1976). These flow patterns show that a separation 
streamline can arise at a point of a smooth solid boundary, a t  varying angles of 
inclination to the boundary. The flow in the neighbourhood of these separation points is 
governed locally by the wedge-type solution given by (1). In  the following section the 
separation a t  a smooth boundary is examined, and it is seen from the local solution that 
a separation streamline can detach at  any angle from a point on a smooth boundary. 

2. Separation at a smooth boundary 
In order to describe the local behaviour in this case, we require a solution for $ in 

the region 0 < 8 < n occupied by the fluid, satisfying the no-slip conditions 
$ = a$r/.la8 = 0 at the boundaries 8 = 0, n, and also yielding a separation streamline 
$ = 0 at some angle a,  where 0 < a < T ,  Satisfaction of the no-slip conditions requires 
that, with $ given by (l), 

A + C = O ,  ( n + l ) B + ( n - l ) D = O ,  

A cos (n + 1) n + B sin (n + 1 )  n + C cos (n - 1) T + D sin (n - 1) T = 0, 

- A(n + 1) sin (n+ I ) n +  B(n+ I )  cos (n + 1 ) ~  
- C ( n - I ) s i n ( n - l ) n + D ( n - l ) c o s ( n -  1)n = 0. 
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$, = rn+l{A,[cos(n+ l)O-cos(n- 1)8] 

+ E,[(n - 1) sin (n + 1) 8 - (n + 1) sin (n - 1) O]},  ( 2 )  

s in (n+ l )n  = 0. (3) 

We reject real values ofn < 0 as representing infinite point-force singularities at  r = 0. 
Otherwise, the acceptable solutions of (3) are n = 2,3,4,  ... . In  the exceptional case 
n = 1 it is easily seen that the only non-trivial solution has the form y?l = Alr2sin28, 
representing the linear shear. A solution representing a separated A ow will satisfy 
$(a) = 0 a t  the separation angle 8 = a. Thus we see that the local solution does not, in 
this case, impose any specific angle of separation on any of the modes n = 2 ,3 ,4  ,.. ., 
since a may take any value in each mode by suitable choice of the ratio of A, to En. The 
solution for n = 1 clearly has no separation. We note here that solutions for different 
values of n are additive. The scaling of the various components which cannot be deter- 
mined locally reflects the elliptic nature of the problem, and can be determined only by 
application of the global boundary conditions. Similar remarks apply in this case to the 
ratio A,: En in each mode. We expect in general that the component solutions for 
n = 1,2,3,  ... will all be present in any global situation at  any point of a smooth 
boundary. Clearly the smaller the value of n the more dominant is the flow for that 
component near r = 0. Points where the n = 1 mode is present evidently represent 
ordinary points of the boundary around which the flow is locally a linear shear. Points 
of separation occur where the n = 1 mode is absent. The strongest separation mode is 
therefore n = 2,  with y?, given by 

$2 = r3(AZ(cos 38 - cos 8) + E,(sin 38 - 3 sin O)}. 

The angle of separation is determined by the ratio A,: E, imposed by the global solution 
when this mode is present. In  all the global solutions known to the authors, separation 
at  a smooth boundary is always determined by the strongest mode, in this case n = 2 .  
This is illustrated in the solutions given by Dorrepaal et al. (1976) and Davis et al. 
(1976), where separation lines arise at  smooth boundaries. When A, or E, is zero, $, is 
symmetric or antisymmetric about the mid-line 8 = $7, respectively. Separation does 
not occur when A ,  is zero. 

where B, = (n - 1) En and D, = - (n + 1) En. The remaining two equations require that 

3. Separation at a sharp edge 

Another interesting special case occurs in Stokes flow around the edge of a thin plate, 
which is represented as flow in a wedge of angle 277. Applying no-slip conditions at  
8 = 0 and 2n, we find the solution to be given again by ( 2 )  with the equation 

sin 2nn = 0 

to determine n. Hence n = 4, $, 2,8,3,  g, . . . . For the case n = 1 we again find the linear 
shear solution = Alr2sin28. In the range 0 i 8 < 2n, $1 gives separation at  8 = n. 
However, the dominant mode is now n = 4, giving rise to the stream function 

$# = rl{d&(cos $8 - cos SO) + E 3 ( j  sin $8 - 5. sin 40)). 
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Again, the local conditions are satisfied irrespective of the ratio A+: E+, so that the 
edge permits separation at any angle. A specific angle can only be determined by 
reference to the global boundary conditions. An interesting global solution illustrating 
the separation at a sharp edge is the solution for a spherical cap symmetrically placed 
in a uniform stream. This was first given by Payne & Pell (1960) for a hemispherical 
cap as a special case of their treatment for a lens. The solution for a general spherical 
cap was given by Collins (1963), whose result for a hemispherical cap differed from that 
of Payne & Pell because of algebraic errors in the Payne & Pell paper. An alternative 
form of solution to this problem has recently been given by Dorrepaal, O’Neill & 
Ranger (1976), who have shown that this flow separates a t  the rim of the cap, and that 
the angle of separation varies with the angle of the spherical cap. Again this solution 
near the rim is represented by the strongest mode, n = 4. In  the special case in which 
the cap becomes a circular disk, however, the solution is one in which A* is zero and no 
separation occurs. Another global solution featuring the n = Q mode without separa- 
tion was given by Dean (1944) for a cusp-shaped surface in a plane, protruding into a 
linear shear flow. Both of these examples suggest that no separation occurs when the 
body has fore-and-aft symmetry relative to the direction of the mainstream. In these 
cases $+ is clearly a symmetric function about 8 = n. On the other hand, near the 
leading edge of a flat plate in a uniform stream at zero incidence, the dominant mode 
is given by n = 8 with E+ = 0, as was seen by Carrier & Lin (1948). In  this case $+ is 
antisymmetric about 6 = n. 

4. Flow near the vertex of a wedge of arbitrary angle 
We now consider the more general problem of the local behaviour in a wedge of 

angle p, where 0 < p < 2n, excluding the two cases p = n, 2n already discussed. 
Satisfaction of the no-slip conditions on 6 = p now requires that 

A ,  sin np sin p - E,{n cos np sin /3 - sin np cos p} = 0, 

A,{n cos np sin /3 + sin np cos p) + E,(n2 - 1 )  sin np sin p = 0. 

A ,  sin na sin a - E,{n cos na sin a - sin na cos a} = 0. 

(4) 

( 5 )  

(6) 

sinpIp = c sinxlx. (7) 

In addition, for separation at  an angle 6 = a (0 < a < B), 

For a non-trivial solution of (4) and (5) we require sin2np = n2sin2p, or, if x = np, 

This is the equation originally studied by Dean & Montagnon (1949) for solutions 
within a wedge. We are interested here in examining the solutions of these equations 
for separation at the vertex of the wedge. We note that in general the ratio of A ,  to En 
for a given n or x: satisfying (7) is no longer arbitrary. Thus, apart from the special cases 
p = n, 2n, separation can occur only at  specific angles a which satisfy (6). Writing 
sin np = & n sin p in (4) and (5) we have 

A,sinp = f (cosnpT cosp)E,. 

Using this equation in (6) the equation for a becomes 

( f sin na sin a cos np T sin na sin a cosp) - sin P(n cos na sin a - sin na cos a )  = 0. (8) 

With the upper choice of sign the stream function is an odd function of 8 - Qp, and the 
flow evidently separates along the line with a = 4/3. For any p ( < en) for which (7) with 
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the upper sign has a real solution, numerical investigation shows that in the dominant 
mode there are no other solutions of (8) for which a < p. With the lower sign the stream 
function is an even function of 6 - +.p, and in the dominant mode in this case there is no 
solution of (8) for a in which a < p. Thus separation occurs if the leading mode 
associated with a solution of ( 7 )  with the positive sign is dominant. The pattern of 
solutions is best seen by reference to the curves of f sinxlx shown in figure 1. Dis- 
counting, here, the vortical flow pattern associated with imaginary values ofn, we see 
that solutions with real values of n begin to appear when /3 reaches p* = 146.3" 
approximately. For p* < p < n, as, for example, a t  p = p1 in figure 1, the leading 
modes are given by the points Pl and Q1, both being non-separating modes. The 
solution represented by PI evidently moves into the non-separating linear shear 
solution as /3 -+ 77 with n = 1. For n < p < 2n, as, for example, a t  p2, the dominant 
mode at  P2 is still a non-separating mode, and the next one, at  Q2, is the first separating 
mode. Thus we see that for /3* < p < 2n there is no separation at  the edge provided 
that there is a component of the leading mode present in the flow. This has also been 
shown by Takematsu (1966) in the particular case where ,8 = ijn, When p reaches 2n, 
the coalescence of the two solutions at P2 and Q2 gives the fist opportunity for a 
separating mode to equal in strength the leading non-separating mode. This coalescence 
gives rise to the arbitrariness in separation angle which has already been noted when 
p = 277 and n = 4. It is worth noting that although n = 1 is a solution of (7)  with the 
positive sign for any p, this is a valid solution (other than when p = n or 2n) only at  the 
stationary points of the curves in figure 1 where tanp  = /3. 

An illustration of the non-separating flow in a wedge of angle /3 < 277 is given by the 
global solution for axisymmetric flow past lenticular bodies in a uniform stream. We 
shall show in the next section that for a spherical lens of any non-zero angle at  its rim, 
which excludes the degenerate case of a spherical cap, axisymmetric Stokes flow does 
not separate a t  the rim. 
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5. Flow near the rim of a spherical lens 
The Stokes flow solution for a spherical lens- placed axisymmetrically in a uniform 

stream was first given by Payne & Pell (1960), who obtained the stream function in 
the form 

where (p,  x) are cylindrical polar co-ordinates withp = 0 along the axis of symmetry of 
the lens, and U is the mainstream velocity. Peripolar co-ordinates ( 6 , ~ )  are defined by 

x = bsin[/(s-t), p = bsinhy/(s-t), 

where s = cosh 7, t = cos 5, and. b is a constant. As shown in figure 2, the two surfaces 
of the lens are defined by f [  = El, t2 and to is an arbitrary constant such that 

0 < El < Eo < 5 2  < 2n. 

The axis of symmetry is given by 7 = 0 and the rim of the lens by 7 = 00. The region of 
flow is 0 < t2 < 6 < 277 + El. K,(s) is the conal function P-++iz(s) and KL(s) = dK,(s)/ds. 
The function P(a,  <) is, for general values of and c2, a lengthy expression in a and 6, 
which has been found explicitly by Payne & Pell but unfortunately with algebraic 
errors, and a corrected form for P(a, E )  has up to now not been published. An alternative 
form for $ has recently been determined by O’Neill(1976), which avoids the use of the 
arbitrary constant 6,. This solution is given by 
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where 
F(a,  t;) = [A(a) cosh at; + B(a) sinh a[ - cosh a(pn - t;)] cos t; 

+ [C(a)coshac+D(a)sinha[-asinha(pn-c)] sing. 
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In  (lo), p = 1 if 0 < 6 < 27r and p = 3 if 2n < 5 < 4n. The no-slip conditions are 
satisfied by choosing A(a),  B(a), C(a)  and D(a) to make F and aF/ag zero on the 
boundaries ( = E2 and 2r+E1, so A(a),  &a), C(a)  and D(a) depend on t1 and ge. For 
general values of tl and c2 they are lengthy expressions and will not be quoted here, 
since their precise form will not be required in the following analysis. Each of A(a) ,  
B(a), C(a) and D(a) is, for all values of 5, and c2, of the form [A(a)]-l times a regular 
function of a, where 

The functions A(a)  and C(a) are even functions, and B(a) and D(a) are odd functions 
of a, 80 that F(a, 5) is an even function of a. On using the integral representation 

A(a)  = a2sin2(E2-i&)-sinh2 ( t ;2- t1-2n)a.  (11) 

a sinaudu 
n 1l (coshu-s)t 

given in Hobson (1931), we may write (10) as 

where 

The integrand of (13) is regular at  all points of the a plane except at the zeros of 
A ( a )  = 0 excluding a = 0, and the integral taken around the infinite semicircle in the 
complex half-plane I m a  2 0 vanishes. The poles in the half-plane I m a  > 0 are at 
a = iA,, iX,, ip, and ip,, where A, and p, are respectively the roots of the equations 

A, sin (& - El) + sin (& - t;, - 2n) A, = 0 (14) 

and pmsin(52-5l)-sin(52-t;l-2n)pm = 0, (15) 

which lie in the first quadrant of the complex a plane, excluding a = 0,  and with either 
set of roots arranged in order of increasing real part. At a = iA, the residue of the 
integrand of (13) is 

e-Amu F*(iAm, 6 )  cosec Amn 

where F*(a, 5) = A(a)  F(a,  6) .  The corresponding residue at a: = ip, is given by (16) 
with A, replaced by pm and the sign of E2 - El - 2n changed. 

(16) 
2 ( ~ :  - 1) A, sin (t2 - El) [sin (52 - 51) + ( 5 2  - - 2 ~ )  cos (62 - 51 - 2n) Am]' 

In  the neighbourhood of the rim, 9 and s are large and we have, from Hobson, 
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where the constants k, and k, take the values 4 or 1 according as A, or pl are real or 
complex roots. 

It will be noticed that (14) and (15) are equivalent to (7) with n replaced by A, or 
pm and ,9 = 2n + g1 - g2, which is the angle at the rim of the flow region bounded by the 
spherical surfaces of the lens. The studies of Dean & Montagnon and Moffatt therefore 
show that ReA, > Rep,, except in the degenerate case of a spherical cap, when 
6, = g2. Thus we may ignore the term in (17) which involves p, with exponentially 
small error. It is therefore clear that if the angle at  the rim is less than B* N 146.3”, A, 
is complex and an infinite set of eddies exists in the flow near the rim, but for angles at 
the rim greater than /I*, A, is real and our earlier discussion of the solutions of (7) 
shows that the flow is dominated by the non-separating mode with n = A, and A, > 4. 

Since b/s measures the distance from a point on the rim when s is large, (17) enables 
us to see the local behaviour of the stream function near the rim and to corroborate the 
purely local analysis described earlier. However, to do this, we must specify P*(iA,, 5) 
and for the purposes of illustration we shall consider the algebraically simpler lens 
configurations of the symmetrical biconvex lens and the spherical cap. 

Symmetrical biconvex lens 

In this case the surfaces of the lens are given by El = 5* and c2 = 2n-5*, where 
0 4 g* < n, and the coefficients A(&),  B(a), C(a) and D(a) are found to be 

2(&2 sin2 5* - sinh2 a<*) sinh an + cosh am, -- - B = -  A 
cosh 2an sinh 2an sinh 2a5* + a sin 25” 

2a(sin2 (* + sinh2 a<*) sinh an + a cosh an. - - -  D 
= -  C 

sinh 2an cosh 2an sinh 2 4 ”  +a sin 25* 

In terms of local dimensionless polar co-ordinates (r ,O) with origin on the rim and 
8 = 0 on t,he surface f = 277 - c*,  we have 

r N i/s, O = <+g*-2n 

in the neighbourhood of the rim. Accordingly the local form for @ is 

y? N UMb2r”+l(A[cos ( A ,  + 1) 0 - cos (A, - 1) 01 

- B[(A, - 1 )  sin (A ,  + 1) 8 - (A, + 1) sin (A, - 1) B]) ,  (1 8) 
with 

B = (A t -  l)sin<*sinA,5*, B = [A , s in~~*+s in~A,~*]s in (~ ,+  1)5*, 

M = nf r(h,  + #)/2Al(A, - I )  r(h, + 2) (25* cos 2A15* +sin 25.). 

In  the case when A, = 1, the expression for $ is interpreted as a limit. It will be noticed 
that the structure of the solution for @ near the rim given by (18) is the same as that of 
(2).  By choosing (* = n, we obtain the solution for axisymmetric streaming flow past 
a circular disk of radius b. The form of the stream function near the rim is 

@ - (21U/3n) b2r9{3 sin $8 - sin $O}, 

which represents a non-separating flow for which A, = 4. On setting &* = in, the lens 
becomes a sphere and the corresponding local form for $ near the equator is then 

$ - qUr2 sin2 0, 

which describes a loc,ally non-separating linear shear flow for which A, = 1. 
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Spherical cap 

In the case of a hemispherical cap, the inner and outer surfaces are 6 = in and 
and the coefficients appearing in (10) have the simple forms 

= $n 

2A cosh an = cosh 2an + (1  + 2a2) cosh an, 

2B cosh an = - sinh 2an - (1  + 2a2) sinh an, 

2C cosh an = a sinh 2an - a sinh an, 

2 0  cosh an = - a cosh 2an + acosh an. 

Now A, = Q and the form of the solution near the rim is 

@ N ( Ub2/6n) r*{3[cos QB - cos 401 - [sin $0 - 3 sin go]}. (19) 

This again conforms with the general two-dimensional form of solution given by (2) 
but is now a separating flow associated with a wedge angle of 2n. Separation occure 
from the rim of the cap at  an angle of B = 2 tan-l3, which agrees with the result of 
Dorrepaal, O’Neill & Ranger (1976) for a hemispherical cap. For a general cap 6 = el, 
the asymptotic form for $ corresponding to (19) is 

@ N ( 2 4 U / 3 ~ )  b2 sin3 Q f l  r8{3[cos $0 - cos +B] cot 46, - [sin $0 - 3 sin 48]}, (20) 

with separation from the rim occurring along the line B = 2 tan-’ (3 cot 46,). 
The separation of the flow past a spherical cap at its rim must clearly be regarded as 

the limiting form of a separation pattern for a thin lens. It may be assumed from these 
results that a thin lens placed axisymmetrically in a uniform stream has a separated 
flow pattern on its concave side with a single toroidal vortex adjacent to the axis of 
symmetry and a point of separation S in the meridian plane on the concave side of the 
lens. As the lens shrinks to a spherical cap the separation point S moves towards the 
rim of the lens and in the limit of the spherical cap i t  reaches the rim. This process is 
clearly associated with the behaviour of the two modes given by P2 and Q2 as p2 -+ 2n 
in figure 1. If we write = 2n - 2e and consider E as small, the two values of x in 
question are n e approximately, for which the values of n are n = 4 + e/n + O($) 
and n = Q+O(e3)  respectively. Substitution in ( 4 )  and ( 5 )  shows that in the first of 
these modes E is O(eA) and in the second A is O(EE).  The leading terms in the stream 
function, taking these two modes together, then give 

@ = Art+sin{cos ( Q  + e /n)  8 - cos (Q - e/n)  B + E [  - 4 sin $e + $ sin $el} 
+ Ed+O@){ - fr sin $0 + Q sin i B  - ps[cos $0 - cos &el}, (21) 

where terms in e2 have been neglected. If we look for values of r at which separation 
occurs on the boundary B = 2n - 2e, that is, where 82$/aB2 = 0 a t  this value of 0, we 
find the condition 

(22 )  

As E -+ 0 the amplitudes A and E of these two modes become of the same order, and the 
limiting ratio is seen, from (20), to be A / E  = $ cot $6,. Thus separation occurs on this 
boundary where r 21 e-g( - +E tan f r&)”‘e-2 .  This gives a real separation point near the 
rim provided that tan 46, < 0, i.e. when C1 > n. This is the condition for the lens surface 
given by 6 = 6, or 0 = 27r - 2s to represent the concave side. When < n, the concave 

r z e-i( - 3eE/4A)n/e-2. 
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side is given by E = &., which corresponds to I3 = 0. It is easily seen from (21) that the 
point of separation a t  I3 = 0 is then given by 

(23) 
The two spherical-cap solutions for El = n & y (0 < y c n) clearly represent the same 
solution, one being obtained from the other by reversal of the flow. It can be seen from 
(22) and (23) that separation occurs very close to the rim ofa thin concave-convex lens. 
If, for example, we take E = 0.1 rad, which corresponds to a lens subtending an angle 
of about 11.5" at its rim, for a hemispherical lens in which El = in the separation 
radius is of order from the edge. For a thin lens which is close to the shape of the 
circular disk we can write c1 = 7r - 6 where 6 ( > 0) is small. Equation (23) then gives 
T x e--Q(s/6)n/E--2. This formula when applied in the limit as s --f 0 with 6 fixed verifies the 
separation at the rim for a nearly plane spherical cap. If we also assume that it can be 
applied in the limiting sense in which s and 6 approach zeroin a fixed ratio it leads us to 
conjecture that for a very slender asymmetric biconvex lens r + 0 when €16 < 1, i.e. 
that there is a separation point near the rim of the lens on the flatter side. For example, 
when 6 = 2s it suggests that separation occurs near the rim on the plane side of a slender 
plano-convex lens. If we follow this case to the limit as E + 0, we recover the circular- 
disk solution in which the separation point comes to the rim of the disk, but the 
separation region becomes of zero thickness in the limit. When €16 is fixed at a value 
greater than unity, (23) shows that T --f 00 as E --f 0, which suggests that there is no 
separation near the rim of an asymmetrical biconvex lens on the side of greater 
curvature. When €18 = 1 we have the symmetrical biconvex lens with no separation 
point at or near the rim on either side whatever the angle at  the rim. In  conclusion we 
note however that this analysis cannot tell us anything about separation points 
occurring outside the neighbourhood of the rim of the lens. To find them we must study 
the global solution of the problem. 

r w e - )  (4s tan &)"/c-~. 
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